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A Probabilistic Transmission Dynamic Model to Assess
Indoor Airborne Infection Risks

Chung-Min Liao,1∗ Chao-Fang Chang,1 and Huang-Min Liang1

The purpose of this article is to quantify the public health risk associated with inhalation of
indoor airborne infection based on a probabilistic transmission dynamic modeling approach.
We used the Wells-Riley mathematical model to estimate (1) the CO2 exposure concentra-
tions in indoor environments where cases of inhalation airborne infection occurred based on
reported epidemiological data and epidemic curves for influenza and severe acute respiratory
syndrome (SARS), (2) the basic reproductive number, R0 (i.e., expected number of secondary
cases on the introduction of a single infected individual in a completely susceptible popula-
tion) and its variability in a shared indoor airspace, and (3) the risk for infection in various
scenarios of exposure in a susceptible population for a range of R0. We also employ a standard
susceptible-infectious-recovered (SIR) structure to relate Wells-Riley model derived R0 to
a transmission parameter to implicate the relationships between indoor carbon dioxide con-
centration and contact rate. We estimate that a single case of SARS will infect 2.6 secondary
cases on average in a population from nosocomial transmission, whereas less than 1 secondary
infection was generated per case among school children. We also obtained an estimate of the
basic reproductive number for influenza in a commercial airliner: the median value is 10.4. We
suggest that improving the building air cleaning rate to lower the critical rebreathed fraction
of indoor air can decrease transmission rate. Here, we show that virulence of the organism
factors, infectious quantum generation rates (quanta/s by an infected person), and host factors
determine the risk for inhalation of indoor airborne infection.
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1. INTRODUCTION

Airborne transmission is known to be a route
of infection for diseases. About 15 million (>25%)
of 57 million annual deaths worldwide are estimated
to be related directly to infectious diseases. Of those
infectious-disease-related deaths, 3.96 million annual
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deaths (7%) occur as a consequence of viral res-
piratory infections (http://www.who.int/whr/en). Air-
borne rhinovirus transmitted in office environments,
influenza spread on an airplane, tuberculosis trans-
mitted in hospital buildings—are all current examples
of airborne infection.(1–5) Control of newly emerg-
ing infections like severe acute respiratory syndrome
(SARS), bioterrorist-spread infections like smallpox,
or pandemic influenza(6) have generated an even
more acute sense of the need to analyze airborne in-
fection transmission.

Understanding what determines patterns of in-
fection spread in populations is important for con-
trolling infection transmission. Infectivity data can
be analyzed with a mathematical model of airborne
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infections to assess the relationship among infection
rate, building ventilation, pulmonary ventilation rate,
and exposure duration of the source cases. The risk
of infection can be estimated using the exponen-
tial dose-response model.(1,2) This model can be ex-
pressed as a Poisson probability distribution: π(d) =
1 − exp(−rd), where π(d) is the probability of infec-
tion for a given dose d and r is the unique parameter
characterizing the process.

Wells(7) used the term “quantum” to indicate the
dose of infectious droplet nuclei necessary to initi-
ate infection, based on the assumption that infection
requires at least one organism. He used a Poisson dis-
tribution to model the average concentrations, rec-
ognizing that in low concentrations some occupants
in an airspace may escape infection by chance. The
Wells-Riley model has been used to estimate the risk
of infection with measles and tuberculosis compared
with epidemiological data.(8)

Myatt et al.(5) have reviewed several related lit-
erature and concluded that increased ventilation of
buildings could reduce the burden of viral respira-
tory infections among the occupants and that airborne
transmission is an important mode of transmission.
Rudnick and Milton(9) suggested that risk of indoor
airborne infection transmission could be estimated
from CO2 level as a marker for exhaled-breath expo-
sure. With indoor airborne infections, rational disease
control requires analysis of the role of building ven-
tilation and other transmission factors by the contact
investigation of the cases of airborne infections oc-
curring in an indoor environment. In addition, we also
require an understanding of the disease dynamics and
risk profiles for different groups in the exposed pop-
ulation. The cost and benefits of alternative control
strategies can then be calculated after these are quan-
tified through proper epidemic models. Environmen-
tal settings impose both spatial and interindividual
heterogeneity that affects the dynamics of disease in-
vasion and spread.(10) In such situations, disease is best
studied in a probabilistic rather than a deterministic
framework,(11,12) allowing incorporation of chance ef-
fects into the model as well as complexity due to the
heterogeneity.

A fundamental concept in epidemic dynamics is
the basic reproductive number, R0, the average num-
ber of secondary cases generated by one primary case
at the start of the epidemic in a completely suscep-
tible population.(13,14) When R0 > 1 it implies that
the epidemic is spreading within a population and
that incidence is increasing, whereas R0 < 1 means
that the disease is dying out. An average R0 of 1

means the disease is in endemic equilibrium within the
population.

R0 essentially determines the rate of spread of an
epidemic and how intensive a policy will need to be
to control the epidemic.(15) Measles, for example, is a
highly infectious respiratory-transmitted disease and
has been estimated to have an R0 of approximately
14,(16) whereas R0 for SARS was estimated to be about
3 in nosocomial transmission.(17,18)

The objective of this article is to quantify the pub-
lic health risk associated with indoor airborne infec-
tion based on a probabilistic transmission dynamic
modeling approach. We used the Wells-Riley mathe-
matical model to estimate (1) the exposure concentra-
tions in indoor environments where cases of inhala-
tion airborne infection occurred based on reported
epidemiological data and epidemic curves for in-
fluenza and SARS, (2) the basic reproductive number,
R0, and its variability in a shared indoor airspace, and
(3) the risk for infection in various scenarios of expo-
sure in a susceptible population for a range of R0. Fur-
thermore, we link the Wells-Riley model derived R0

with standard susceptible-infectious-recovered (SIR)
model derived transmission parameter to study the re-
lationships between contact rate and exhaled-breath
exposure in a ventilated airspace.

2. MATERIALS AND METHODS

2.1. Quantitative Epidemiology of Influenza
and SARS Data

With the detailed epidemiological data from re-
ported cases regarding influenza and SARS associ-
ated with epidemic curves (number of cases by date
of symptom onset), we estimated the infected prob-
ability for influenza and SARS in the absence of in-
terventions and control efforts. SARS, a novel coron-
avirus, is a recently described illness of humans with a
high morbidity and mortality that has been reported
locally in Taiwan since April 2003.(18) We have esti-
mated the force of infection based on that estimated
infected probability. We reanalyzed data, including
infectivity data, human respiratory ventilation under
different activities, and environmental conditions. In-
fectivity data on a weekly basis from the Center for
Disease Control, Taiwan, on incidence of influenza
based on the elementary school settings from 2003 to
2004 and epidemiology of SARS reported from Taipei
Municipal Ho-Ping Hospital on April 24–May 8, 2003
were used in the present study.
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Because of limited knowledge, both from obser-
vations and theoretical understanding of transmis-
sion in a ventilated airspace, we need to characterize
uncertainty and variability. We used a Monte Carlo
simulation to quantify our uncertainty concerning re-
ported infection probability and force of infection. We
used the Kolmogorov-Smirnov (K-S) statistics to opti-
mize the goodness of fit of distributions. We employed
Crystal Ball software (Version 2000.2, Decisioneer-
ing, Inc., Denver, CO, USA) to analyze data and to es-
timate distribution parameters. For this study, 10,000
iterations are sufficient to ensure stability of results.

2.2. Transmission Model

Most investigators fit a specific model that sum-
marizes assumptions about the epidemiology of the
disease when only times of symptom onset are avail-
able.(18,19) We modified the Wells-Riley equation pro-
posed by Rudnick and Milton(9) to model the risk
of indoor airborne transmission of infected diseases.
The modified Wells-Riley equation expresses infec-
tion risk as a function of the fraction of inhaled air
that has been exhaled previously by someone in the
building (i.e., rebreathed fraction) using CO2 concen-
tration as a marker for exhaled-breath exposure.

Rudnick and Milton(9) proposed a Wells-Riley
equation as

P = D
S

= 1 − exp
{
− iqpt

Q

×
[

1 − V
Qt

(
1 − exp

(
− Qt

V

))]}
, (1)

where P is the probability of infection for susceptible
population, D is the number of disease cases, S is the
number of susceptible, i is the number of infectors,
q is the quantum generation rate by an infected per-
son (quanta S−1), p is the breathing rate per person
(m3 s−1), t is the total exposure time (seconds), Q is
the outdoor air supply rate (m3 s−1), and V is the
volume of the ventilated space (m3). Equation (1)
assumes steady-state exposure; equal host suscepti-
bility; uniform sizes of droplets; uniform ventilation;
homogeneous mixing of air; and that elimination of
infective particles caused by loss of viability, filtration,
settling, and other mechanisms is small compared with
removal by ventilation. Then the accumulation rate of
quanta is equal to the quantum generation rate minus
the rate of quantum removal by ventilation. Rudnick
and Milton(9) indicated that Equation (1) is especially

useful in poorly ventilated environments when out-
door air supply rates can be assumed constant.

The total CO2 level in the indoor air is contributed
from human origin and outdoor air supply. Person-to-
person transmission of infectious diseases is through
the recirculated air in the ventilation airspace. There-
fore, the outdoor air supply rate (Q) can be ex-
pressed as functions of the fraction of indoor air that is
exhaled-breath (f ), people in the ventilated airspace
(n), and the breathing rate per person (p), and can be
expressed as

Q = np
f

. (2)

Substituting Equation (2) in Equation (1) gives

P = D
S

= 1 − exp
{
− iqft

n

×
[

1 − Vf
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(
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(
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V f

))]}
. (3)

We use the modified Wells-Riley model shown in
Equation (3) to estimate the infection probability.

2.3. Basic Reproductive Number

When i = 1 and S = n − 1, R0 for an infectious
disease in a building environment can be derived from
Equation (3) and expressed as,

R0 = (n − 1)
{

1 − exp
{
−qft

n

×
[

1 − Vf
npt

(
1 − exp

(
−npt

Vf

))]}}
. (4)

The basic reproductive number is generally presented
as a single point estimate, with no indication of the
variability inherent in the estimation of biological pa-
rameter. We used the reported epidemic curves of
influenza and SARS associated with a probabilistic
transmission model, by which we can quantify our un-
certainty concerning R0 attributable to the large vari-
ance of the distribution of the number of secondary
cases infected by each source case and the uncertainty
in that distribution and the uncertainty due to sam-
pling variability.

2.4. Total Proportion of Infected Population

The probability of infection for each susceptible
person each day is based on the transmission proba-
bilities for each potentially infected contact. Accord-
ing to Anderson and May,(13) the total proportion of
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infected population during the epidemic (I) is seen to
depend only on R0 as

I = 1 − exp(−R0 I). (5)

Equation (5) is based on the theoretical relationship
between epidemic (I) and R0 assuming a homoge-
neous, unstructured population.

2.5. Risk Analysis

Risk of infection in a ventilated airspace can be
calculated as the proportion of the group expected
to be infected multiplied by the conditional probabil-
ity of epidemic, given basic reproductive number R0.
This result in a joint probability function describes the
probability of an outbreak of diseases in a susceptible
population for a range of values of R0. Graphic dis-
play of the joint probability function also provides a
means of assessing how alterations in basic reproduc-
tive number R0 due to management efforts or natural
attenuation would affect the assessment. This can be
expressed symbolically as

�(R0) = P(R0)P(I|R0), (6)

where �(R0) is the risk of an outbreak of an epi-
demic in a susceptible population for a range of R0,
P(R0) is the probability density function of R0, and
P(I | R0) is the conditional probability of the infec-
tion, given basic reproductive number R0. To show
how Equation (6) can be employed in airborne in-
fection risk assessment, we consider several environ-
mental settings: influenza in an aircraft environment
and SARS transmission in the hospital and elemen-
tary school. We analyzed aircraft and classroom in
the elementary school as a single room and the hos-
pital as an entire floor of a large building, represent-
ing an independently ventilated shared airspace. As
noted by Rudnick and Milton,(9) we assume that one
individual develops illness at the start of a school or
workday and exposes others for a definite number of
hours. Knowing the number of occupants in the venti-
lated airspace (n) and the fraction of indoor air that is
exhaled-breath (f ) captured by Equation (2), we can
use Equation (6) to estimate R(I).

The key parameters in the simplest epidemio-
logical model are the transmission parameter β and
the recovery rate ν.(13) The transmission parameter
(β) represents the probability that an infective per-
son will have contact with, and successfully infect, a
susceptible person. Specifically, the transmission pa-
rameter denotes the rate at which a susceptible pop-
ulation becomes infected and is the expected number

of new infections per infectious person per suscepti-
ble person per day. The recovery rate (ν) is the re-
ciprocal of the infectious period (1/ν) and is the ex-
pected number of recoveries per infected person per
day. We intend to employ a standard SIR structure in
the basic epidemiological model to relate CO2-based
risk equation-derived R0 to a transmission parame-
ter β to implicate the relationships between indoor
carbon dioxide concentration and contact rate by the
equation,(13)

β = R0(ν + µ)
n

, (7)

where µ is the birth rate and death rate of infected
population (d−1).

3. RESULTS

3.1. Infected Probability and Quantum Generation
Rate of Influenza

Fig. 1 shows a histogram of epidemic curve for
cases reported in terms of infected rate, the opti-
mized distributions of infected probability, and es-
timated quantum generation rate of influenza. The
infected probability of influenza was adapted from
school-based surveillance weekly reports during the
period from 2003 to 2004 by Center for Disease Con-
trol, Taiwan. Log-normal distribution that optimizes
the K-S statistics shows LN(0.006, 1.53) for infected
probability (Fig. 1B) in that the selected distribution
type and parameters were based on statistical criteria,
comparisons of distribution parameters, and visual in-
terpretation of histograms. Quantum generation rate
of influenza can be estimated from Equation (3) with
known infected probability (Fig. 1B) and adopted in-
put parameters (Table I). After optimizing the K-S
statistics, LN(66.91 quanta h−1, 1.53) was fitted for
quantum generation rate of influenza (Fig. 1C).

3.2. Risk of Outbreak of Influenza

As an example of how Equation (6) can be em-
ployed for risk assessment, we consider a highly in-
fectious environmental setting of aircraft, e.g., Boe-
ing 737 (Table II). We used our proposed trans-
mission model to quantify the uncertainty concern-
ing R0 attributable to the large variance of infected
probability and quantum generation rate of influenza
(Figs. 1B and 1C). The Monte Carlo simulation result
shows the optimized log-normal distribution with ge-
ometric mean 10.35 and geometric standard deviation
1.48 (LN(10.35, 1.48)) is the most suitable fitted
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Fig. 1. Quantitative epidemiology of influenza as reported from
elementary school in Taiwan during 2003–2004: (A) epidemic curve
for cases reported in terms of infected rate, (B) infected probability
based on Fig. 1A with fitted log-normal distribution, and (C) fitted
log-normal distribution of quantum generation rate.

distribution for R0 (Fig. 2A). We found that the dis-
tribution of R0 is considerable right skew with wide
credible intervals. Fig. 2B shows the estimate for the
total proportion of infected population (I) that de-
pended only on R0 via the expression in Equation (5),

indicating the fact that the expectations based on R0

assume a homogeneous population in direct contact.
The plotted probability calculated from the out-

come of the Monte Carlo simulation followed a joint
probability function (Equation (6)) describing the risk
of an outbreak of influenza in a susceptible popula-
tion for a range of R0 (Fig. 2C). The cumulative den-
sity function (CDF) of �(R0) can then be illustrated
in Fig. 2D. We can further calculate the exceedence
risk of R0 through complementary CDF of �(R0), as
shown in Fig. 2E. Fig. 2E indicates that the exceedence
probability of an outbreak in a Boeing 737 aircraft
from a single introduction decreases with R0, reach-
ing about a risk that is equal to 0.5 when R0 = 10. This
indicates that there is a 50% probability of R0 being
bigger than 10 during an outbreak of influenza in a
Boeing 737 aircraft.

3.3. Infected Probability and Quantum Generation
Rate of SARS

The infected probability of SARS was derived
from number of cases divided by total susceptible by
date of symptom onset for SARS outbreak in Taipei
Municipal Ho-Ping Hospital during the period from
April 24, 2003 to May 8, 2003 (Figs. 3A and 3B).
Infected probability (Fig. 3B) was calculated from
cases divided by total population at each date of on-
set. The quantum generation rate (Fig. 3C) was esti-
mated by employing the modified Wells-Riley equa-
tion associated with the fitted infected probability for
SARS epidemics in Taipei Municipal Ho-Ping Hos-
pital (Fig. 3B) and adopted input parameters (Table
I). Log-normal distribution optimizing the K-S statis-
tics showed LN(0.00015, 2.64) for infected probability
(Fig. 3B) and LN(28.77 quanta h−1, 2.64) for quantum
generation rate of SARS (Fig. 3C).

3.4. Risk of Outbreak of SARS

We consider two highly infectious environmen-
tal settings, National Taiwan University (NTU) Hos-
pital and an elementary school (Table II), to ap-
praise the risk of being exposed to SARS virus. We
used Taipei Municipal Ho-Ping Hospital based epi-
demic curve and our proposed stochastic transmission
model to quantify the uncertainty concerning R0 at-
tributable to the large variance of infected probability
and quantum generation rate of SARS (Figs. 3B and
3C). Fig. 4A illustrates probability density functions
of the optimized log-normal distributions of R0 in that
the Monte Carlo simulation results show LN(2.61,
2.61) and LN(0.77, 2.61) are the most suitable fitted
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Table I. Input Parameters Used in Modified Wells-Riley Equation to Estimate Infected Probability from Reported Epidemiological Data
and Epidemic Curves for Influenza Epidemics in Elementary School and SARS in Taipei Municipal Ho-Ping Hospital

People in the Volume of Total Fraction of Indoor
Ventilated the Shared Exposure Breathing Air that is Number of
Airspace Airspace Time Ratea Exhaled Breath Infectors

Settings (n) (V in m3) (t in hours) (p in m3 h−1) (f ) (i)

Influenza
Elementary school 50 600 6 0.38 0.00475b 1

SARS
Taipei Municipal 20,832 145,602 6 1.375 0.0247c 1

Ho-Ping Hospital

aAdopted from ICRP 66.(23)

bCalculated based on Equation (2) for Q = 20 m3 h−1 m−2 and floor area = 200 m2 (Construction and Planning Agency, Ministry of Interior,
ROC).
cBased on Q = 5 air changes per hour (ACH) (Construction and Planning Agency, Ministry of Interior, ROC).

distributions of R0 for NTU Hospital and the elemen-
tary school, respectively. The most notable feature of
the log-normal distribution of R0 is the considerable
right skew.

The plotted probability calculated from the out-
come of the Monte Carlo simulation followed a joint
probability function (Equation (5)) describing the risk
of an outbreak of SARS in a susceptible population
for a range of R0 (Fig. 4C). The CDF of �(R0) and
the exceedence risk of R0 can then be illustrated in
Figs. 4D–4E. Fig. 4E indicates that the exceedence
probabilities of outbreak in NTU Hospital and the el-
ementary school from a single introduction, reached
a risk about equal to 0.5 when R0 = 2 and 3.8, re-
spectively. This indicates a 50% probability that R0

Table II. Input Parameters Used to Estimate Basic Reproductive Number (R0) for Influenza in a Commercial Airliner and SARS
Transmission in Hospital and Elementary School

People in Volume of Total Estimated Fraction of Indoor
the Ventilated the Shared Exposure Breathing Quantum Air that is Number of

Airspace Air Space Time Ratea Generation Rate Exhaled Breath Infectors
Settings (n) (V in m3) (t in hours) (p in m3 h−1) (q in h−1) (f ) (i)

Influenza
Boeing 737 aircraft 54b 168b 6 0.48 LN(66.91, 1.53)c 0.0306d 1

SARS
National Taiwan 300 7465.5 24 0.48 LN(28.77, 2.54) 0.00386e 1

University Hospital
Elementary school 50 600 6 0.38 LN(28.77, 2.54) 0.00475f 1

aAdopted from ICRP 66.(23)

bAdopted from Rudnick and Milton (2003).(9)

cLog-normal distribution with a geometric mean and a geometric standard deviation.
dBased on Q = 0.3 ACH, a mean value adopted from Rudnick and Milton (2003).(9)

eBased on Q = 5 ACH (Construction and Planning Agency, Ministry of Interior, ROC).
fSee Table I.

is greater than 2 during an outbreak of SARS in the
elementary school, and R0 is greater than 3.8 in NTU
Hospital. Thus, it is apparent that the environmental
setting plays a major role in the spread of infection.

3.5. Relationship Between Indoor CO2 Level
and Contact Rate

A key advantage of transmission modeling is that
alternative control scenarios can be examined, giving
insight into the potential strategies. Here, we incor-
porated the CO2-based risk equation derived R0 into
a standard SIR model to assess the risk of exhaled-
breath exposure in a ventilated airspace in terms of
the relationship between contact rate and indoor CO2
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Fig. 2. Airborne infection with influenza in a Boeing 737 aircraft:
(A) fitted log-normal distribution of basic reproductive number
(R0), (B) total proportion of infected population (I) during an epi-
demic, (C) the risk of an outbreak of influenza in a susceptible pop-
ulation for a range of values of R0, (D) cumulative density function
of �(R0), and (E) the exceedence probability of an outbreak of
influenza in a susceptible population for a range of values of R0.

level. Figs. 5A and 5B show the optimal fitted
log-normal distributions of contact rates for influenza
and SARS calculated from 10,000 iterations of
Monte Carlo simulation based on Equation (7),

Fig. 3. Quantitative epidemiology of SARS as reported from
Taipei Municipal Ho-Ping Hospital in Taiwan during April 24–May
8, 2003: (A) epidemic curve for cases reported up to May 8, 2003,
(B) infected probability based on Fig. 2A with fitted log-normal
distribution, and (C) fitted log-normal distribution of quantum gen-
eration rate.

where the distributions of R0 are shown in Figs. 2A
and 4A and the input data of birth and recovery rates
used in the SIR model are listed in Table III. The
simulation outcomes that give the optimal log-normal
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Fig. 4. Airborne infection with SARS in NTU Hospital and ele-
mentary school: (A) fitted log-normal distribution of basic repro-
ductive number (R0), (B) total proportion of infected population
(I) during an epidemic, (C) the risk of an outbreak of SARS in a
susceptible population for a range of values of R0. (D) cumulative
density function of �(R0), and (E) the exceedence probability of
an outbreak of SARS in a susceptible population for a range of
values of R0.

Fig. 5. Optimal fitted log-normal distributions of contact rate (β)
for (A) influenza transmission in a Boeing 737 aircraft and (B)
SARS transmission in NTU Hospital. The relationships between
indoor CO2 concentration and contact rate (β) for influenza in a
Boeing 737 aircraft (C) and SARS in NTU Hospital (D) are also
shown in that the box and whisker plots represent the uncertainty
calculated from 10,000 iterations of Monte Carlo simulation.

distributions of contact rate are LN(0.04, 1.52) for
influenza and LN(0.0005, 3.32) for SARS (Figs. 5A
and 5B).

Figs. 5C and 5D show the relationships between
indoor CO2 concentration and contact rate for in-
fluenza and SARS, respectively, simulated with pa-
rameters estimated for a Boeing 737 aircraft and
NTU Hospital epidemics (Table II). Figs. 5C and
5D also illustrate that reductions in indoor CO2 lev-
els by increased outdoor air ventilation can achieve
some reduction in transmission, although on their
own they are insufficient to control influenza or
SARS; other measures are also needed, such as
improved infection control in a hospital, voluntary
reductions in population contact rate, and move-
ment restriction. Alternatively, if we estimate the
distributions of contact rate from measured in-
door CO2 concentration based on Figs. 5C and
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Table III. Birth Rate (µ, d−1) and Recovery Rate (ν, d−1) Used
in the SIR Model for Influenza and SARS

Parameter Estimate 95% CI

SARS
µ 3.43 × 10−2a 3.20 × 10−3–6.54 × 10−2

ν 9.60 × 10−2a 4.10 × 10−2–1.51 × 10−1

Influenza
µ 3.91 × 10−5b Not available
ν 2.78 × 10−1c 1.92 × 10−1–4.35 × 10−1

aAdopted from Wang (2003).(24)

bAdopted from Anderson and May (1991).(13)

cAdapted from Cauchemez et al. (2004).(25)

5D, R0 can be directly calculated from SIR model
without employing the modified Wells-Riley equa-
tion. Furthermore, the indoor CO2 concentrations
might be recorded as a surrogate for outdoor air sup-
ply in that we could enhance building ventilation to
reduce the population contact rate to achieve R0 ≤ 1
based on different exposure times (Fig. 6).

4. DISCUSSION

In an environmental setting there are many fac-
tors that affect the spread of indoor airborne infection
that are not included in the model.(3) Hence, the esti-
mate of R0 obtained by modeling, no matter how in-
accurate, can only be used as a guideline. The model,
however, is more informative than a single statistic
by considering the distribution of R0 values to show
uncertainty or heterogeneity, which provides insight
into the epidemic process. Furthermore, a model has
been developed that allows the consequences of the
spread of viral or bacterial infection through a suscep-
tible population to be quantified. The model demon-
strates the risk of an outbreak in a susceptible popu-
lation for a range of values of R0. The total number of
people infected can be estimated. The model can be
used to investigate the effects of building ventilation
for achieving the control of the spread of infectious
disease. It provides a powerful tool for investigating
the costs, benefits, and risks associated with control
strategies for specific diseases.

Our analysis emphasizes that the risks for indoor
airborne infection are determined not only by the vir-
ulence of the agent but also by environmental fac-
tors, e.g., room size and ventilation rate, and host
factors, e.g., breathing rate and exposure time. Little
can be done to change one’s breathing rate, yet our
data suggest that risks for airborne respiratory infec-

Fig. 6. Enhanced air changes per hour (ACH) in reducing indoor
CO2 concentration and contact rate may be effective in limiting the
spread of airborne infection based on different exposure times t =
1–6 hours: (A, B) influenza in elementary school and (C, D) SARS
transmission in the hospital.

tious disease are likely to decrease considerably with
fairly modest increase in room ventilation with low-
concentration exposures. Our data might be helpful in
refining both public and risk manager strategies to re-
duce risks from indoor infection. Increased outdoor
air supply rate may reduce the risk of transmitting
airborne pathogens, Nardell et al.,(20) however, indi-
cated that building ventilation may be inherently lim-
ited in decreasing this risk, especially when the con-
centration of exposure to infection is high. Modeling
studies of transmission of indoor airborne infection
have usually assumed a single uniform quantum gen-
eration rate in infected persons as well as a homoge-
neous concentration of infectious aerosol over time
and space,(1,9,20,21) but we have added a border range
of values to assess the relative importance of variabil-
ity in infectious aerosol production rates.
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The key advantage of employing the Wells-Riley
model is that data generated by the Wells-Riley model
agree with observed data in airborne infection with
measles and tuberculosis.(8,22) No other models of
airborne infection with more specified variables and
more complex mathematical forms have been vali-
dated against epidemiological data of any airborne in-
fection.(2,12,15) Our possible approach to extending the
Wells-Riley model in the future would incorporate a
stochastic epidemiological model, e.g., the probabilis-
tic SIR model. With the current model formulation,
we can detect the indoor airborne infection and its
relation to outdoor air supply in the indoor building
environments. The indoor CO2 concentrations might
be recorded as a surrogate for outdoor air supply. We
could adjust the outdoor air supply rates to reduce
the population contact rate that can be estimated from
the model regarding the relationship between contact
rate and indoor CO2 level.

Our simulation results suggest that occupants in
buildings with low outdoor air supply may have an in-
creased risk of exposure to airborne infectious droplet
nuclei emanating from an infected occupant. The
Wells-Riley model also allows for environmental con-
siderations, and it can be adapted to variable exposure
scenarios by stratifying by persons sharing a common
dose. Epidemiological data will likely never become
available to test the validity of any of these models,
yet our analysis demonstrates how the risk for indoor
airborne infection is determined not only by the viru-
lence of the organism but also by the balance between
infectious quantum generation rate, breathing rate,
duration of exposure, and host susceptibility factors.
Ventilation of the indoor environment is an impor-
tant determinant of the risk for infection. Enhanced
room ventilation and other engineering control mea-
sures associated with respiratory protection or public
health interventions may be used to decrease the risk
for infection.(1,2,17,18) Our modeling data emphasize
the need to better understand the complex interac-
tions among host susceptibility factors, environmental
factors, transmission mechanisms, and dose-response
relationships in determining the risk of airborne
infection.

In summary, we have used mathematical mod-
els of indoor airborne infection that are generally
applicable to estimate the infection of influenza and
SARS from the rate of increase of cases, to assess
the likelihood of an outbreak when a case is intro-
duced into a susceptible population, and to quantify
risk profiles associated with various environmental
settings.
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